What is the greatest hazard associated with continued use of gasoline and/or coal?

Using Hazard Information to Evaluate Technical Performance

"Yes! I found it...Now I have to remember what I need it for..."

Class 13- Marty Mulvihill

What is the point of considering hazard anyway?

- Move beyond single metrics for performance, since we live in multi-dimensional space.
- Help make informed decisions.
- Avoid unnecessary hazards and risks.
- Develop robust precautions.

Green Chemistry is unique among various movements and trends in science and engineering because it considers hazard.

Outline for assignment and presentation next Monday

- 1. Our process is ____ the main steps are___.
 - Show overview of process
- 2. This process is attractive because....
 - Highlight differentiating factors
- 3. We considered the following potential impacts _____ because _____.
 - Show hazard tables
- 4. Key areas for future research
 - More data/research is needed to make x improvement or validate x claim.
- 5. Summary the main technology and impact drivers are _____ the main barriers are _____.

Types of Hazards

- *Immediate Hazards:* known and quantifiable (Acute Health, Explosively, etc.)
- Characterized Chronic Hazards: Known and quantifiable, but not personal. (Known Carcinogen, PM 2.5, etc.)

"India's breakneck pace of industrialization is causing a public health crisis with 80-120,000 premature deaths and 20m new asthma cases a year due to air pollution from coal power plants, a Greenpeace report warns." - Guardian 3/11/13

 Suspected Hazards: Not easily quantifiable (Global Warming, Endocrine Disruptions, Data Gaps.)

Organizing and Comparing Hazards

- How the heck to you compare things with different units?
 - Reference or Complementry compounds
 (compare you emissions for x with gasoline emissions of x)
 - Relative Severity (compare all of the potential emissions from your process and decide which are the most concerning)
 - Hazard only approach (GreenScreen)
 - Hazard + Exposure (Risk and LCA)

Global Warming: Reference Compound gCO₂e (e=equivalents) for transportation

Fuel	Pathway	gCO ₂ e Direct	gCO ₂ e indirect	gCO ₂ e total
Gasoline	Ave. CA Crude, CA refined.	95.9	0	95.9
Ethanol	Midwest Ave	69.4	30	99.4
Ethanol	CA Ave	65.66	30	95.66
Ethanol	CA Dry Mill, Wet Process	50.7	30	80.7
CNG	US produces, CA compress	68	0	68
CNG	Landfill gas, pipeline quality, CA compress	11.3	0	11.3
Electricity	CA Ave	124.1	0	124.1

Other Important Pollutants for consideration using reference compounds/sources:

- PM 10/2.5
- SOx
- NOx

(Amounts can be found here:

<u>http://www.arb.ca.gov/app/emsinv/emssumcat_query.php?</u>
<u>F YR=2008&F DIV=-4&F SEASON=A&SP=2009&F AREA=CA#7</u>
California air resources board.

Note: These are not normalized per unit energy, they are CA wide emissions values.

These are all regulated and so there is a driver for data collection.

It is also hard to differentiate at times, since the standards will dictate emissions levels.

Hazards through out the lifecycle

The goal of the Hazard
Tables is to help prioritize
and compare the other
chemical hazards that occur
at other stages in the life
cycle.

 CO_2 , $SO_{x_i}NO_{x_i}PM$ all from the use phase...

Hazard Tables

ID	Reactivity	Flammability	Corrosivety	Explosi vity	Acute toxicity (LD50)	Irritation (eye or skin)
	Carcinogen / mutagen	Reproductive	Developmental (teratogenicity)	Neurot oxicity	Endocrine disruption	Respirator y effects
	Persistence	Bioaccumula tion	Acute aquatic toxicity (ecoindicator species)	Mobility	Other Ecotoxicity	Other Health

GreenScreen Organization of Hazard Traits

18 Hazard Endpoints

Human Health Group I	Human Health Group II and II*	Environmental Toxicity & Fate	Physical Hazards
Carcinogenicity	Acute Toxicity	Acute Aquatic Toxicity	Reactivity
Mutagenicity & Genotoxicity	Systemic Toxicity & Organ Effects	Chronic Aquatic Toxicity	Flammability
Reproductive Toxicity	Neurotoxicity	Other Ecotoxicity Studies when available	
Developmental	Skin Sensitization	Persistence	
Toxicity	Respiratory Sensitization	1 Groloterioe	
Endocrine Activity	Skin Irritation	Bioaccumulation	
	Eye Irritation		

Weight the hazards relative to standards and

Chermicals to be Avoided:

- Characterized harmful to human health group 1 endpoints. (Cancer, Mutagen, Reproductive, Developmental, Endocrine)
 - "harmful" has different thresholds for each group.
- Very Bioaccumulative and Very Persistent
- Or combined PBT

	Considered Bioaccumulative	Considered Very Bioaccumulative
Bioconcentration factor (BCF)	> = 1,000	> 5,000
	Considered Persistent	Considered Very Persistent
Half-life in water, soil, and sediment	Considered Persistent Half-life >= 2 months (>= 60 days)	Considered Very Persistent Half-life > 6 months (> 180 days)

Weight the hazards relative to standards and data. Chemicals with more acceptable Hazard:

- Moderate harmful to human health group 1 endpoints. (Cancer, Mutagen, Reproductive, Developmental, Endocrine)
- High group 2 endpoints. (Acute Toxicity, reactivity and irritation)
- Very B/P with moderate tox (Group 1, 2 or Eco).

Chemical with relatively little Hazard:

- Moderate harmful to human health group 1 endpoints. (Cancer, Mutagen, Reproductive, Developmental, Endocrine)
- Moderate (Acute Toxicity and irritation)
- Moderate B/P

Preferred Chemicals:

- low(Cancer, Mutagen, Reproductive, Developmental, Endocrine)
- low (Acute Toxicity and irritation)
- low B/P

Logic/Assumption behind GreenScreen Ranking

- High persistence and bioaccumulations increase the life-time risk of chemicals.
- 2. Chronic hazards are harder to mitigate than acute hazards because of the time lag between exposure and harm.

Expectations for your evaluation:

- 1. Transparency-Tell me where the data comes from and what assumptions you are making
 - It is OK to site others protocol (CA air resources board, GreenSceen, EPI Suite, etc.)
- **2.** A reasonable not comprehensive scope- Invest you time wisely. Chose substances and endpoints that are representative and help you compare to competing technologies.

Taking a look at resources

Website	Use
http://www.chemspider.com/	ID, Acute Hazards, EPI suite calculation, calculated and measured results (All chemical classes)
http://www.pbtprofiler.net/	Persistance, Bioaccumulations and Toxicity overview, Calculation only (Only Organic Chemicals, no metals or surfactants)
http://www.cdc.gov/NIOSH/	Human Health Resource (All Chemical Classes)
http://chem.sis.nlm.nih.gov/chemidplus/ http://toxnet.nlm.nih.gov/cgi-bin/sis/ htmlgen?HSDB	Both contain compellations of experimental data. Both link to HSDB which summarizes the literature. Interfaces and search criteria are slightly different. (All Chemical Classes)
www.pharosproject.net	Access to regulatory lists (Chemicals related to building industry across classes)

What to do next: Finding the data

Ecotox: ChemSpider/EPI Suite will give you your Persistence and Bioaccumulation Values. (days/hours, and BCF unitless, but sometimes expressed as LOG) Ecotox LC₅₀ EC₅₀: ToxNet/HSDB/Animal Tox Studies/ EcoTox Values (mg/L)

LD₅₀ Values: ToxNet/HSDB/Animal Tox Studies/non-Human Tox Values

Endocrine Disruption: Pharos/Chemical and Material Library/

"Endocrine" you can click for more details.

Remember the Context

- 1. Our process is ____ the main steps are___.
 - Show overview of process
- 2. This process is attractive because....

- We considered the following potential impacts because .
 - Show hazard tables
- 4. Key areas for future research
 - More data/research is needed to make x improvement or validate x claim.
- Summary the main technology and impact drivers are _____ the main barriers are _____.

Class Activity: Returning to Process diagrams and determining how to invest remaining resources.

- 1. Place Chemicals that you have hazard information about in their correct place.
- 2. Identify where you think difference in hazard may impact over-all sustainability?
- Summarize the information that you will need to find to differentiate your process from competing processes.