


## **ECOTOXICOLOGY**

- Entry, distribution and fate of pollutants within the environment
- The entry and fate of pollutants in living organisms within an ecosystem
- -The harmful effects of the chemical pollutants on the constituents (biotic & abiotic) of ecosystems (which include man)

| Toxicology                    | Ecotoxicology                                                        |
|-------------------------------|----------------------------------------------------------------------|
| Single target Species (Human) | Multiple Target Species                                              |
| Individual Effects            | Population level effects                                             |
| Absorption                    | Environmental Release                                                |
| Distribution                  | Environmental Fate Bioaccumulation/Bioconcentration Biomagnification |
| Metabolism                    | Organismal Metabolism                                                |
| Elimination                   | Biodegradation<br>Sequestration                                      |

Pollutant

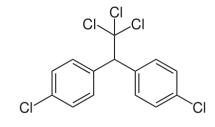
Biochemical
Changes

Physiological Changes Toxicity
Mechanism
to
Ecosystem
Effects

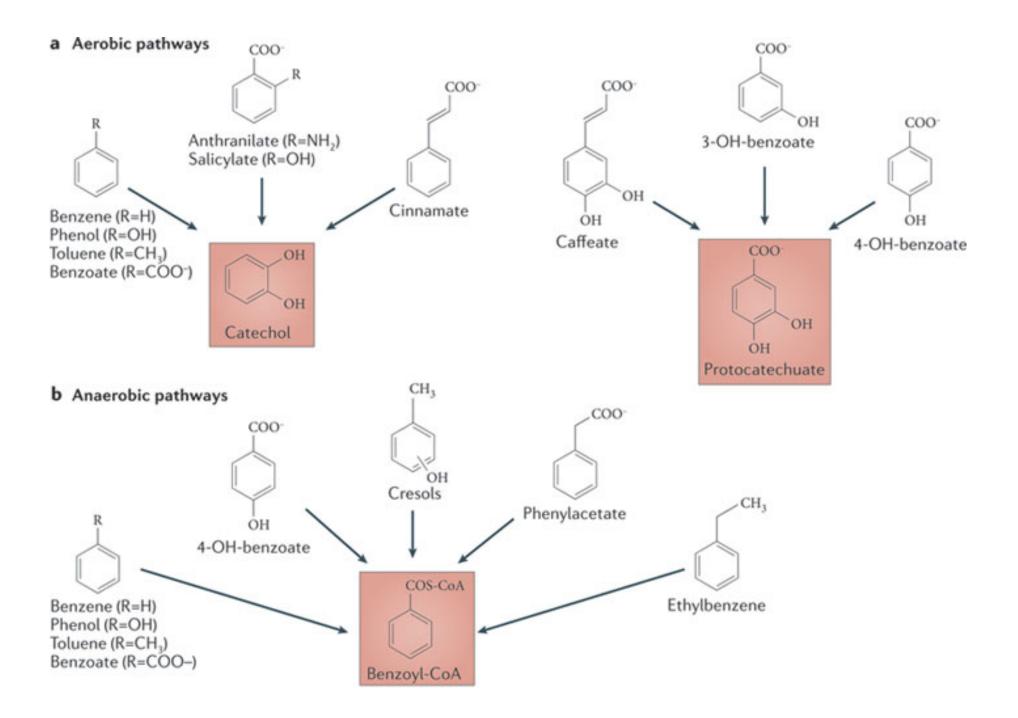
Ecosystems Changes

Community Changes

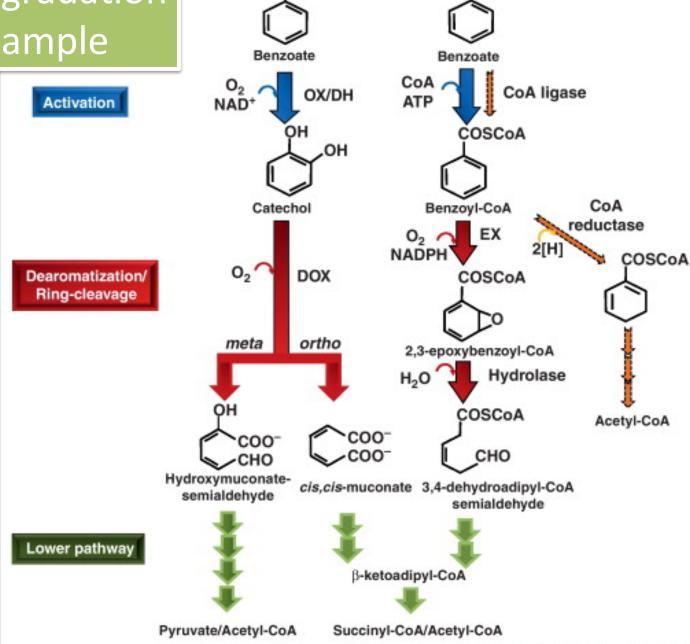
Population changes


Whole Organism responses

# Chemical Assessment in Ecotoxicology




- The Big Three PBT
  - Persistence (P) does it stick around? Biodegraded? Is it very persistent?
  - Bioaccumulation (concentration & magnification) (B) does it accumulate in organisms? Does the concentration increase from prey to predator?
  - Toxicity (T) will it kill the organisms?
- Environmental Fate and Transport where is it going?
   What is the relevant organism air, water, sediment,
- Exposure scenarios point source vs dispersed runoff pulse, constant, only Tuesdays in March.


### Persistence

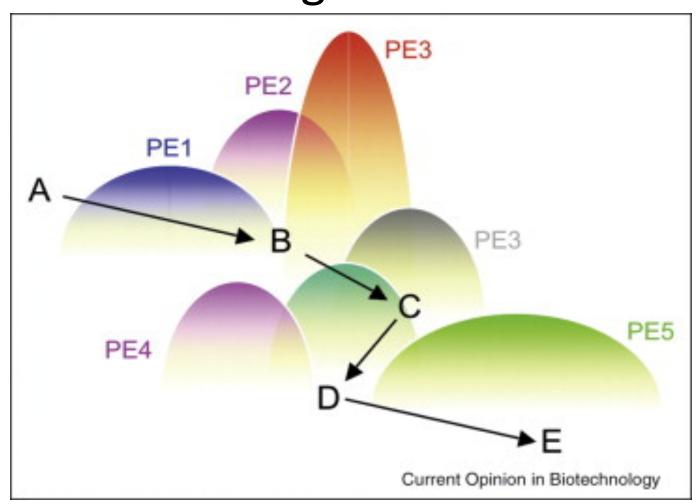


- Abiotic degradation breakdown without organisms
   e.g. photolysis
- Biodegradation organism driven usually microbes
- Community driven process enzymes from multiple different species
- Co-metabolism energy source
- Biometabolism Aerobic vs Anaerobic Metabolism



## Biodegradation Example




(b)

COO-

Current Opinion in Biotechnology

COO-

# Biodegradation in a community of organisms



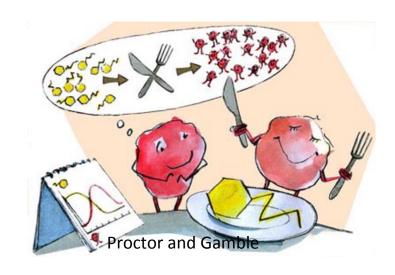
# Dirty Dozen

#### **United Nations Environmental Program**

Hexachlorobenzene

Mirex

Polychlorinated Biphenyls (PCBs)


Polychlorinated dibenzodioxins

$$CI_n$$
  $CI_m$ 

Polychlorinated dibenzofurans

Toxaphene

# Barriers to Biodegradation



- Chemical structure not found in nature
  - do not or rarely exist as natural products or contain structural elements that cannot be synthesized biochemically
  - number and orientation of certain groups differ from naturally existing compounds. e.g. aliphatic or aromatic compounds that carry several methyl groups.
    - ortho-dimethyl or vicinal-trimethyl substituted aromatic compounds
    - branched aliphatic compounds like tert-butanol or tertbutylmethyl

# Barriers to Biodegradation

- low water solubility and high lipid solubility
  - Mass transfer limitations absorption to organic matter polycyclic aromatic hydrocarbons

Humic acids are thought to be complex aromatic

macromolecules

- High molecular weight
  - no transport into micro-organisms
- Lack of functional Groups
  - Unsubstituted hydrocarbons
- Unfavorable thermodynamics
  - Monochlorinated compounds
- Steric hindrance-branching hydrocarbons
  - methyl-tert-butyl ether

# Barriers to Biodegradation

- Electron donating functional groups
  - Oxygenases can't attack

```
X X= C-Halogen
Halogen
C≡N
COR<sub>1</sub>
SO<sub>3</sub>H
N=N-R<sub>2</sub>
NO<sub>2</sub>
```

- High intrinsic toxicity of compound
- Unfavorable environmental conditions for microorganisms
  - high salt, temperature, color scheme
- Lack of nutrients

# Testing for Biodegradation

- Solution Biodegradation by CO2 Evolution OECD 301B
- 8 day respirometry test that measures oxygen consumption -OECD 301C
- Solution Biodegradation Closed Bottle Test determines biodegradation by dissolved oxygen in a 28 day test -OECD 301 D

Ready biodegradability (OECD 301 B)

X

Determination of CO<sub>2</sub> production - test substance, mineral medium, activated sludge - air supply (CO<sub>2</sub> free) - 28 days

# Predicting Biodegradation Metabolism Databases

- University of Minnesota Biocatalysis/ Biodegradation Database
  - <a href="http://umbbd.ethz.ch/">http://umbbd.ethz.ch/</a>

#### Rule bt0003

[Pathway Prediction Engine] [All Rules List] [BBD Main Menu]

#### **Description:**

bt0003: Aldehyde -> Carboxylic acid

#### **UM-BBD Reaction(s):**

Benzaldehyde ----> Benzoate (reacID# r0269)

2-Methylbenzaldehyde ----> o-Methylbenzoate (reacID# r0222)

3-Methylbenzaldehyde ----> m-Methylbenzoate (reacID# r0214)

1-Naphthaldehyde ----> 1-Naphthoic acid (reacID# r0787)

2-Naphthaldehyde ----> 2-Naphthoic acid (reacID# r0772)

1-Octanal ----> Octanoate (reacID# r0023)

6-Oxohexanoate ----> Adipate (reacID# r0175)

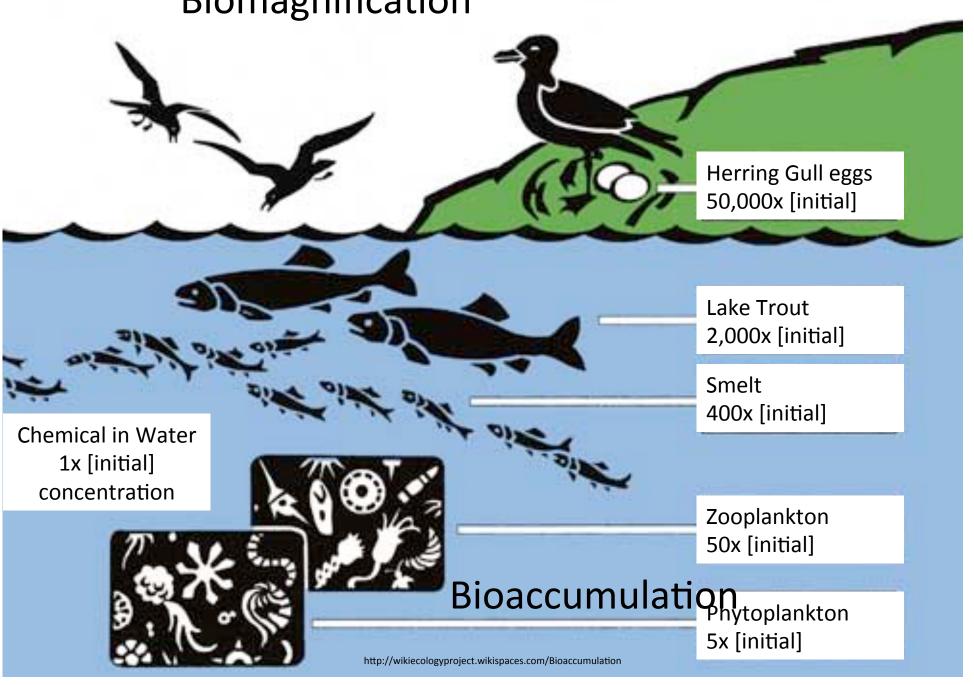
Salicylaldehyde ----> Salicylate (reacID# r0339)

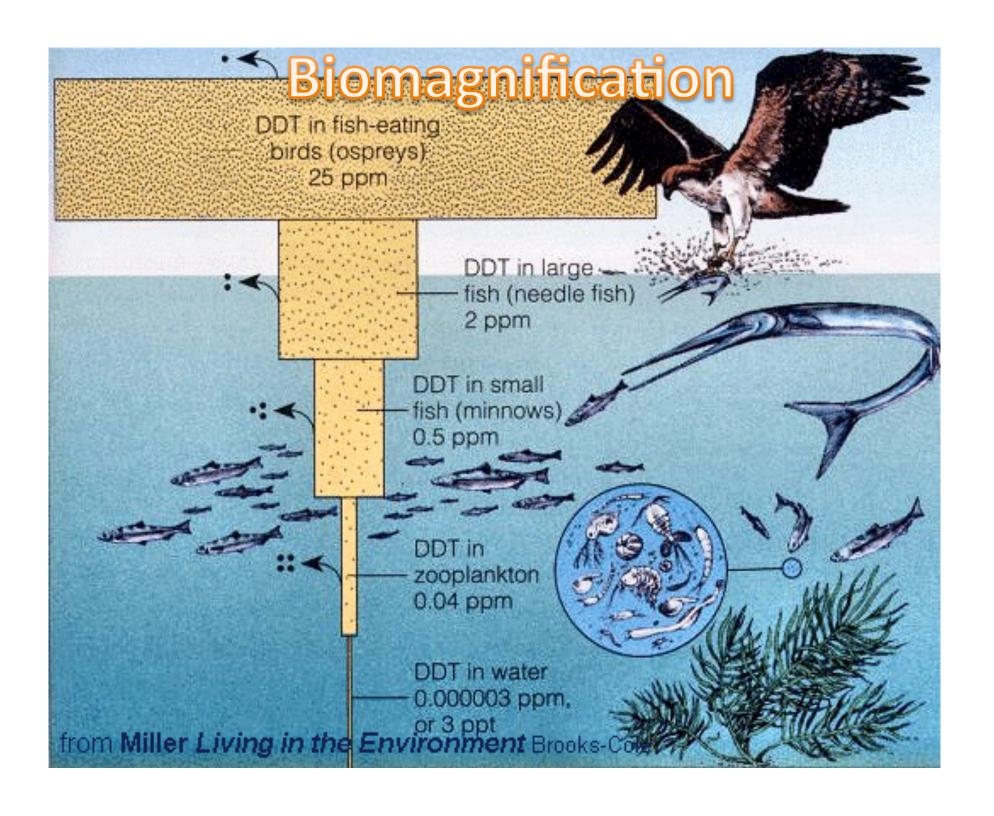
p-Tolualdehyde ----> p-Toluate (reacID# r0177)

Vanillin ----> Vanillate (reacID# r0145)

If you have any comments on rule bt0003, email <a href="mailto:BBDMaster@mail.ahc.umn.edu">BBDMaster@mail.ahc.umn.edu</a>

[Pathway Prediction Engine] [All Rules List] [BBD Main Menu]


- PBT profiler
  - http://www.pbtprofiler.net/

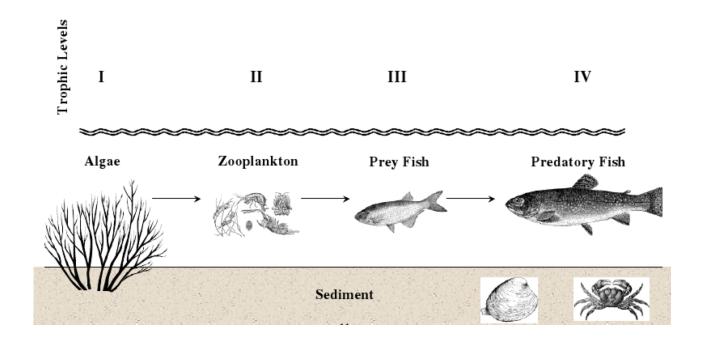

J. Chem. Inf. Comput. Sci. **2003**, 43, 1051-1057.

### Bioaccumulation

- Bioconcentration -the process by which there is a net accumulation of a chemical directly from water into aquatic organisms resulting from simultaneous uptake (e.g., by gill or epithelial tissue) and elimination.
- Bioaccumulation -the accumulation of chemicals in the tissue of organisms through any route, including respiration, ingestion, or direct contact with contaminated water, sediment, and pore water in the sediment.
  - Bioaccumulation Factor (BAF) The ratio of the contaminant in an organism to the concentration in the ambient environment at a steady state, where the organism can take in the contaminant through ingestion with its food as well as through direct content.
- Biomagnification-Result of the process of <u>bioaccumulation</u> and biotransfer by which tissue concentrations of chemicals in organisms at one trophic level exceed tissue concentrations in organisms at the next lower trophic level in a food chain
- Trophic transfer -the movement of contaminants from one trophic level, i.e., prey, to another trophic level, i.e., predators








### Structural factors bioaccumulation

- High partition coefficient between octanol and water  $(K_{ow})$  usually expressed as log  $K_{ow}$ 
  - Log Kow is the logarithm of the ratio of a chemical's concentration n-octanol to its equilibrium concentration in water contacting the n-octanol.
  - Bioaccumulation generally increases as chemicals between  $log K_{ow} = 1 6$
  - Water Solubility
- Polarity
- Ionization
- Molecular Weight
- metals, such as mercury, that can form organo-metallic complexes
- Organismal Metabolism

# Measuring Bioaccumulation

- Experimental expensive rarely done
  - Field Studies & Mesocosms measure concentration in each organism



#### Prediction:

Chemicals with log  $K_{OW} \ge 5$  are regarded as potentially bioaccumulative in aquatic organisms.

Terrestial :  $\log K_{OW} \ge 2$  and  $\log K_{OA} \ge 6$ .

http://dx.doi.org/10.1016/j.envint.2010.03.010,

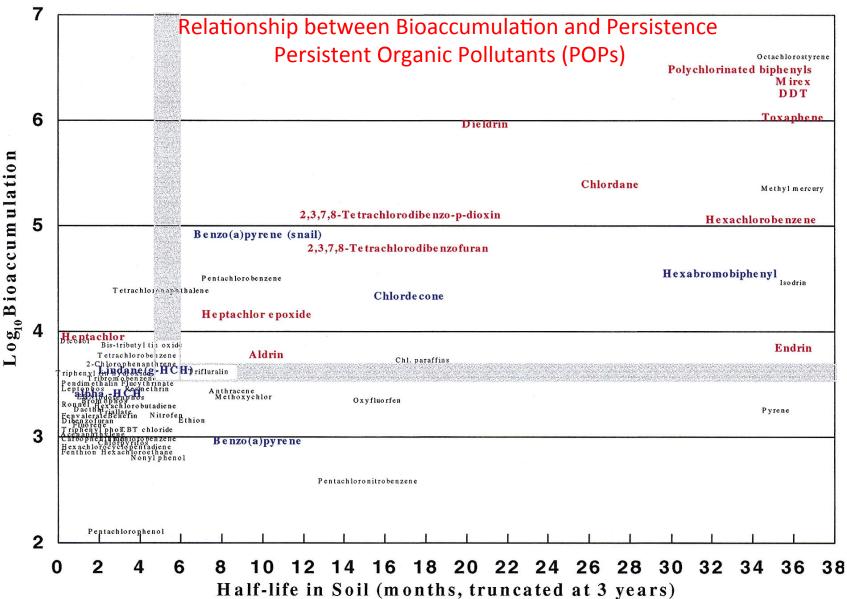
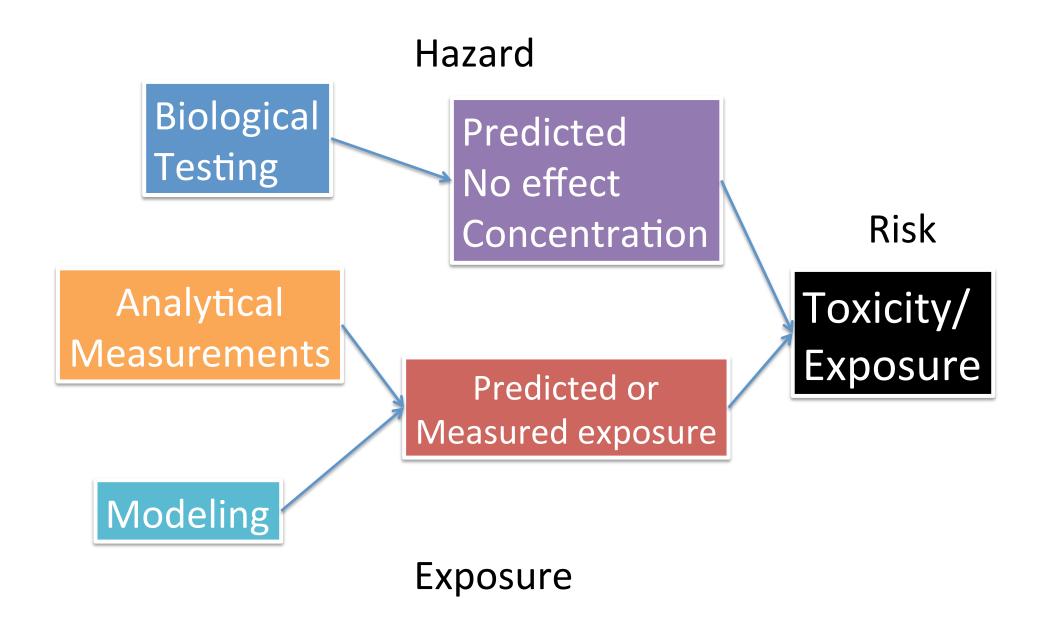




Figure 2 Bioaccumulation vs half-life in soil. The logarithm of the bioconcentration/bioaccumulation factors of selected organic chemicals versus their estimated half-lives in soil is graphed. UNEP POPs are displayed in red; additional substances included in the UNECE-LRTAP POPs protocol are displayed in blue. The shaded lines represent the UNECE-LRTAP and NAAEC-CEC guidance criteria.

# **EcoToxicity testing History**

- 1930's some of the first uses of aquatic organisms for testing to determine the causes of observed fish kills
- 1945 some of the first methods for conducting toxicity tests were published
- 1962 -Rachel Carson Silent Spring – Recognition of environmental toxicology as unique from human toxicology
- 1972 Clean Water Act
- 1984 Standardized biological methods introduced to measure water quality developed quickly after the US EPA initiated a national policy in to control toxic substances based on a water quality approach.
- 1995 WET test methods -National Pollutant Discharge Elimination System - The issuance of permits for effluent discharges into surface waters was subsequently tied to whole effluent testing using standardized toxicity tests.
- 2006 Mechanism based assessment adverse outcome pathways research area





# Current Approaches

- Laboratory Ecotox
  - Sentinel Species
  - Kill 'em and count 'em
  - No mechanistic insight
  - Doesn't identify primary toxicant in mixture
  - Sublethal toxicity evades current tests
  - Limited predictive possibilities
  - Expensive and time consuming





Alive



Deceased

#### Field Ecotox

- Bioassessment count them (did they die?) biodiversity
- Analytic Approaches \$\$, specific assays, need to know possibilities, no link to biologic effect

# Trophic Level Test Organisms

Sensitive species – representative of trophic level

- Freshwater aquatic organisms
  - Primary Producer Algae
  - Primary Consumer Crustacean
  - Secondary Consumer Fish
  - Tertiary Consumer Bigger Fish
  - Sediment Organisms -Crustacean

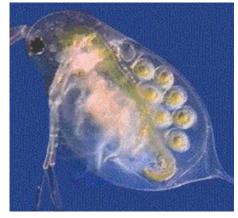


# **Toxicity Test Organisms**

- Use of test species based on
  - Lab hardiness
  - Common
  - Known life cycle
  - Cheap
  - Short-lived






Fathead minnow







Daphnia



# Acute vs. Chronic Toxicity Tests

- Acute Toxicity test
  - Drop dead testing death or immobilization
  - Time = 2 days (invertebrates) to 4 d. (fish)
  - LD<sub>50</sub> (Lethal dose 50 dose where 50% buggers dead)
  - $EC_{50}^{30}$  (effective concentration 50 50% endpoint other than death)
  - NOEC No Observable Effect Concentration
    - Highest concentration not signficantly different from control
  - LOEC Lowest Observable Effect Concentration
    - Lowest test concentration that is significantly different from control
  - quick, relatively cheap (but still ~\$700-1,200 per test)
- Chronic Toxicity test
  - Sublethal
  - Time = 7d. to 18 months
  - Growth
  - Reproduction
    - brood size (Ceriodaphnia dubia can have 2-3 broods in seven days)
    - Hatching success
  - Usually more sensitive

### **Ecotox Database**

| Crustaceans; Standard Test Species   |           |           |   |            |       |              |                                    |  |       |                               |
|--------------------------------------|-----------|-----------|---|------------|-------|--------------|------------------------------------|--|-------|-------------------------------|
| Daphnia pulex<br>Water Flea          | D/        | FW<br>LAB | 1 | BCF<br>153 |       | ACC/<br>RSDE | A 0.04 ug/L                        |  | 15337 | <u>View</u><br><u>Details</u> |
| Dap <u>hnia p</u> ulex<br>Water Flea | FD/<br>M/ | FW<br>LAB | 1 | BCF 203    |       | ACC/<br>RSDE | A 0.008 ug/L                       |  | 15337 | View<br>Details               |
| Dap <u>hnia p</u> ulex<br>Water Flea | S         | FW<br>LAB | 1 | BCF<br>225 |       | ACC/<br>RSDE | A 0.04 ug/L                        |  | 15337 | View<br>Details               |
| Daphnia magna<br>Water Flea          |           | _FW_      | 1 | _EC0       |       | BEH<br>EQUL  | F 718000 ug/L                      |  | 707   | View<br>Details               |
| Daphnia magna<br>Water Flea          |           | _FW_      | 1 | EC100      |       | BEH<br>EQUL  | F 14 <u>00000</u> ug/L             |  | 707   | View<br>Details               |
| Ceriodaphnia dubia<br>Water Flea     |           | FW<br>LAB |   | EC50       | INC   | ITX<br>IMBL  | F 130 (97-179)<br>umol/L           |  | 18991 | View<br>Details               |
| Daphnia magna<br>Water Flea          |           | _FW_      | 1 | EC50       |       | BEH<br>EQUL  | F 10 <u>20000</u> ug/L             |  | 707   | View<br>Details               |
| Daphnia magna<br>Water Flea          | SM        | FW_LAB    | 1 | EC50       | _INC_ | ITX<br>IMBL  | A 18000<br>(14810-21900)<br>_ug/L_ |  | 16968 | <u>View</u><br><u>Details</u> |
| Daphnia magna<br>Water Flea          | SM        | FW<br>LAB |   | EC50       |       | ITX<br>IMBL  | A 1 <u>8000 ug</u> /L              |  | 13142 | <u>View</u><br><u>Details</u> |

http://cfpub.epa.gov/ecotox/report.cfm?type=short

| *** AQUATIC TEST #: 401386 ***       |          |                             |                      |                  |                |                                                    |                |  |  |
|--------------------------------------|----------|-----------------------------|----------------------|------------------|----------------|----------------------------------------------------|----------------|--|--|
| CHEMICAL                             |          |                             |                      |                  |                |                                                    |                |  |  |
| TEST<br>NAME: Benzene<br>COMMENT: NR |          | GRADE<br>NR                 | PURITY<br><b>NR</b>  | FOF<br><b>NR</b> | ₹M.            | RADIOLABEL<br>NR                                   | CAS #<br>71432 |  |  |
| TEST CONDITIONS                      |          |                             |                      | SPECIE           | S              |                                                    |                |  |  |
| STUDY TYPE:                          | NR       | NR                          |                      |                  | S#             | 5 Daphnia magna<br>(Water Flea)                    |                |  |  |
| MEDIA:                               | FW       | FW                          |                      |                  | •              |                                                    |                |  |  |
| LOCATION:                            | NR       | NR                          |                      |                  |                | NR NR                                              |                |  |  |
| CONTROL:                             | NR       |                             |                      | LIFE ST          | AGE:           | not reported,                                      | unknown        |  |  |
| EXPOSURE TYPE:                       | NR       |                             |                      | СОММЕ            | NT:            | NR                                                 | NR             |  |  |
| APPLICATION FREQ.:                   | NR NR    |                             | PUBLIC               | ATION            |                |                                                    |                |  |  |
| EXPOSURE DUR.:                       | 24 h     | our(s)                      |                      | REFER            | ENCE #:        | 707 Bringmai                                       | nn,G., and R.  |  |  |
| STAND DUR. (D):                      | 1 day    | y(s)                        |                      |                  |                | Kuehn, 1982                                        |                |  |  |
| CHEM ANAL. METHUNIT OF MEASURE       | :        | not reporte<br>mg/L miligra |                      |                  | STANDA         | RD CONC (ug/L                                      | ) ION          |  |  |
| F 718                                | <b>L</b> | NR                          | ТО                   | NR               | 718000         | , ,                                                | NR             |  |  |
|                                      |          | Tut                         | 10                   |                  |                |                                                    | , iii          |  |  |
| EFFECT RESULTS                       | Daha     |                             |                      | ENDPOI           | NI             | Effective con                                      |                |  |  |
| EFFECT:<br>TREND:                    |          |                             |                      | ENDPOINT:        |                | Effective concentration to<br>0% of test organisms |                |  |  |
| RESPONSE SITE: NR                    |          |                             | ENDPOINT<br>ASSIGN.: |                  | P              |                                                    |                |  |  |
| % EFFECT: NR                         |          |                             | SIGNIFICANCE:        |                  | NA             |                                                    |                |  |  |
| EFFECT MEASUREMENT:                  |          |                             | LEVEL:               |                  | NA             |                                                    |                |  |  |
| Equilibrium                          |          |                             | BCF Value (F):       |                  | NR ( NR to NR) |                                                    |                |  |  |
|                                      |          |                             | BCF Val              |                  |                |                                                    |                |  |  |
|                                      |          |                             |                      | -                |                |                                                    |                |  |  |

# Ecotoxicity Structure Activity Relationships

#### • ECOSAR:

http://www.epa.gov/opptintr/newchems/
tools/21ecosar.htm]

 Empirical relationships between structure and toxicity in different organisms.

## PBT summary

- Persistence –somewhat tractable to to predict/identify chemical characteristics which are likely to increase/decrease persistence
- Bioaccumulation Relatively reasonable models for bioaccumulation
- Toxicity Empirical data driven mechanistic understanding lacking – many sub-lethal endpoints are not assessed – e.g. endocrine disruption.