Process Mapping

Module 2: Chemical design, performance, and impacts.

Please sit with your group

Course Context

- 1. Introduction Project proposal (Feb 22nd)
- 2. Technical performance and heath and environmental impacts Key figures and explanation. (March 18th)
- 3. Law and Policy Summary of barriers and drivers. (April 8th)
- Business Scope, development, and available capital in the market and potential partnerships. (April 22nd)
- 5. Integration and tradeoffs Conclusions, path forward and rough draft. (May 1st)

Two different ways to write a review

First Assignment Due Friday

Project proposal:

- -What BioFuel/energy source?
- -Where does it fit with respect to other options?
- -What make it interesting?

-Show me that you have read both our assigned reading and started researching more broadly

Today's goal is to map the processes and chemicals involved with your chosen biofuel/energy.

Green Chem., 2010, **12**, 1493–1513

Start with broad categories

Inputs/Procedures

Waste or Output

Biomass

Separation/pretreatment

Intermediate Chemicals

Purification/Upgrading

Use

Corn Ethanol

Inputs/Procedures

Fertilizer, pesticides Energy, Land, water, sunlight, CO₂

Wet milling, Hydrolysis (acid, heat, or enzyme), Solid/Liquid separation

Sugar, yeast, water

Energy

Ethanol, E10-E85,

Ten minute timer

Waste or Output

Corn

Eutrophication, run-off, CO₂,

Pretreatment

Gypsum, Sugars, wastewater, biomass (lignocellulose, bran, etc.)

Fermentation

Ethanol, Other fermentation products, Biomass (lignocellulose, yeast)

Distillation/blending

 CO_2

Use

Energy, CO₂, Upgraded chemicals (Ethylene, etc.)

Then take a closer looks at each process to characterize products and yields

Pretreatment Products

Then take a closer looks at each process to characterize yields and products

Pretreatment yields

Process Products

15 minute timer

Process yields

Note relevant chemical inputs or outputs.

15 minute timer

Corn

Fermentation

Distillation/blending

Pesticides/Herbicides: Atrazine, Phosphonoglycine, Ammonia nitrate and sulfate (Source: Pesticide Action Network http://www.pesticideinfo.org)

Starch, C6 sugars, biomass for other uses, protein, fiber, etc.

Ethanol major, minor Methanol, acetone, butyl alcohol, etc.

Purification (distillation) Heat, molecular sieves, Gasoline: Gasoline (6-14 Carbon hydrocarbons, aromatics)

Burning: Particulates, NOx, SOx, Ozone, Feedstock: Ethylene, ethylene glycol,

Finally, Summarize Key Findings

Ten minute timer

Typical corn yields are 2000, 2400 lbs/acre in the US.

Most wet milling of corn is done using heat not chemical treatment.

Co-products of Wet milling include: fiber feed, protein feed, some corn oil, as well as other sugar products.

Bushel of Corn (56 lbs.) yeilds ~ 2.5 gallons of 96% EtOH

The energy density of Ethanol is less than gasoline 1.5 L EtOH = 1 L gasoline

From a life cycle perspective there can be upto 10-20% net CO₂ reduction compared to gasoline.